Наипечальнейшая часть этих реформ — попытки «сделать математику интересной» и «важной в жизни детей». Вам не надо делать математику интересной — она уже более интересна, чем вы сможете вынести! И торжество ее в неважности для жизни — вот почему она так занимательна. Попытки изобразить математику полезной и нужной для ежедневных дел всегда натужны и убоги: «Видите, дети, как просто, когда знаешь алгебру, высчитать, сколько Марии лет, если ей на два года больше, чем дважды ее возраст семь лет назад!» — как будто кто-то в жизни получит эту безумную информацию вместо настоящего возраста. Алгебра — не инструмент для жизни, это искусство симметрии и чисел, и потому достойно постижения само по себе. Даны сумма и разность двух чисел. Каковы сами числа? Вот простой, элегантный вопрос, и не надо лезть из кожи вон, чтобы придать ему привлекательности. Древние вавилоняне любили решать такие задачи, и наши ученики их тоже любят. (Да и вам, надеюсь, понравится!) Нам не надо заворачиваться в тройные узлы, чтобы придать математике важность для ежедневных дел. Ее важность, как и важность искусства вообще — в осмыслении человеческого опыта. Или, может быть, вы думаете, что дети хотят чего-то, относящегося к их ежедневным делам? Может быть, их восхищает что-то практическое, например, сложный процент по кредиту? Людей восхищает фантазия, и это именно то, что математика может дать — убежище от ежедневного, волшебный бальзам от практических забот. Другая проблема — когда авторы учебников начинают «сюсюкать», чтобы сделать математику «дружественной» и победить «страх перед математикой» (одна из множества болезней, на самом деле вызываемых школой). Чтобы ученики могли запомнить формулы, вы можете придумать целую историю о том, как Иван Демьянович едет на машине вокруг Елизаветы Макаровны и говорит ей, как хороши были ее два пирога (L=2?R), или что ее пироги квадратные (S=?R?), или еще какую-нибудь глупость. А как же настоящий рассказ о проблеме измерения кривых, о Евдоксе[11] и Архимеде и методе неделимых, о трансцендентности числа ?? Что интереснее — измерять приблизительный размер кружка по клеточкам, а потом вычислять длину окружности по формуле, которую вам дали без объяснения, или услышать историю одной из самых прекрасных, захватывающих задач, и самых ярких и сильных идей всей человеческой истории? Мы убиваем в детях интерес к кругам, в конце концов! Почему мы не даем ученикам услышать об этом, не то чтобы дать им возможность самим позаниматься математикой, прийти к собственным идеям и мнениям? Какой еще предмет изучают, даже не упоминая о том, каковы его история, философия, основоположения, эстетические критерии и текущее положение вещей? Какой еще предмет отбрасывает первоисточники — чудесных произведений искусства, выполненных самыми творческими умами истории — в пользу убогих третьесортных учебников? — 11 —
|