Логика мышления

Страница: 1 ... 345678910111213 ... 95


Линейный сумматор

Сигналы выхода и, соответственно, входа для таких нейронов уже не являются дихатомичными (0 или 1), а выражаются некой скалярной величиной. Функция активации тогда записывается как

y=?i?ixi

Линейный сумматор не стоит воспринимать как что-то принципиально иное по сравнению с импульсным нейроном, просто он позволяет при моделировании или описании перейти к более длинным временным интервалам. И хотя импульсное описание более корректно, переход к линейному сумматору во многих случаях оправдан сильным упрощением модели. Более того, некоторые важные свойства, которые трудно разглядеть в импульсном нейроне, вполне очевидны для линейного сумматора.

Фильтр Хебба

Далее мы будем часто обращаться к нейросетевым моделям. В принципе, практически все основные концепции из теории нейронных сетей имеют прямое отношение к строению реального мозга. Человек, сталкиваясь с определенными задачами, придумал множество интересных нейросетевых конструкций. Эволюция, перебирая все возможные нейронные механизмы, отобрала все, что оказалось для нее полезным. Не стоит удивляться, что для очень многих моделей, придуманных человеком, можно найти четкие биологические прототипы. Поскольку наше повествование не ставит целью хоть сколько-либо детальное изложение теории нейронных сетей, мы коснемся только наиболее общих моментов, необходимых для описания основных идей. Для более глубокого понимания я крайне рекомендую обратиться к специальной литературе, например, Саймон Хайкин «Нейронные сети. Полный курс» (Хайкин, 2006).

В основе многих нейросетевых моделей лежит хорошо известное правило обучения Хебба. Оно было предложено физиологом Дональдом Хеббом в 1949 году (Hebb, 1949). В немного вольной трактовке оно имеет очень простой смысл: связи нейронов, активирующихся совместно, должны усиливаться, связи нейронов, срабатывающих независимо, должны ослабевать.

Состояние выхода линейного сумматора можно записать:

y=?i=1m?ixi

Если мы инициируем начальные значения весов малыми величинами и будем подавать на вход различные образы, то ничто не мешает нам попробовать обучать этот нейрон по правилу Хебба:

?i(n+1)=?i(n)+?y(n)xi(n)

Где n – дискретный шаг по времени, – ? параметр скорости обучения.

Такой процедурой мы увеличиваем веса тех входов, на которые подается сигнал xi(n), но делаем это тем сильнее, чем активнее реакция самого обучаемого нейрона y(n) . Если нет реакции, то не происходит и обучение.

Правда, такие веса будут неограниченно расти, поэтому для стабилизации можно применить нормировку. Например, поделить на длину вектора, полученного из «новых» синаптических весов.

— 8 —
Страница: 1 ... 345678910111213 ... 95