Суждение р = q истинно в тех случаях, когда оба суждения принимают одинаковые значения, являясь одновременно либо истинными, либо ложными. Это значит, что истинность р достаточна для признания истинным q, и наоборот. Отношение между ними характеризуется и как необходимое, ложность р служит показателем ложности q, а ложность q указывает на ложность р. Логические отношения между несовместимыми суждениями. Несовместимыми являются суждения А и Е, А и 0. Е и I, которые одновременно не могут быть истинными. Различают два вида несовместимости: противоположность и противоречие. 1. Противоположными (контрарными) являются суждения А и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными. Истинность одного из противоположных суждений определяет ложность другого: А ? ?Е; Е ? ?A. Напр., истинность суждения «Все офицеры – военнослужащие» определяет ложность суждения «Ни один офицер не является военнослужащим». При ложности же одного из противоположных суждений другое остается неопределенным – оно может быть как истинным, так и ложным: ?A ? (Е ? ?Е); ?Е ? (А ? ?A). 2. Противоречащими (контрадикторными) являются суждения А и О, Е и I, которые одновременно не могут быть ни истинными, ни ложными. Для противоречия характерна строгая, или альтернативная, несовместимость: при истинности одного из суждений другое всегда будет ложным; при ложности первого второе будет истинным. Отношения между такими суждениями регулируются законом исключенного третьего. Если А признается истинным, то О будет ложным (А ? ?О); при истинности Е будет ложным I: (Е ? ?I). И наоборот: при ложности А будет истинным О ( ?A ? О); а при ложности Е будет истинным I ( ?Е ? I). 29. ЛОГИЧЕСКИЕ ОТНОШЕНИЯ МЕЖДУ ПРОСТЫМИ СУЖДЕНИЯМИОтношения устанавливаются не между любыми, а лишь между сравнимыми, т. е. имеющими общий смысл суждениями. Несравнимыми являются суждения, имеющие различные субъекты или предикаты. Таковы, напр., два суждения: «Среди космонавтов есть летчики»; «Среди космонавтов есть женщины». Сравнимыми являются суждения с одинаковыми субъектами и предикатами и различающиеся связкой или квантором. Напр.: «Все американские индейцы живут в резервациях»; «Некоторые американские индейцы не живут в резервациях». Отношения между простыми суждениями обычно рассматриваются с помощью мнемонической схемы, называемой логическим квадратом. Его вершины символизируют простые категорические суждения – А, Е, I, О; стороны и диагонали – отношения между суждениями. — 29 —
|