Язык математики ценен для науки не потому, что он изобретен искусственно, а потому, что он не обладает теми свойствами обычного языка, которые делают его мало приспособленным для научного использования, и обладает такими свойствами, которые очень ценны для развития науки. Естественный язык, сложившийся в историческом процессе как коммуникативное и информативное средство, сугубо модален и эмоционален. Он великолепно приспособлен для передачи внутреннего состояния человека, для воздействия на других людей путем возбуждения в них соответствующих чувств, но мало пригоден для точного, бесстрастного научного анализа, поскольку его элементы не обладают однозначностью смысла, имеют массу трудноуловимых оттенков, поскольку в нем имеются омонимичные выражения, а его слова меняют свое значение со временем, иногда приобретая прямо противоположный смысл. Короче, естественный язык не подходит для точных и аналитических наук как средство исследования из‑за его слабой формализованности. Так что же оставалось делать Платону или элеатам? Использовать тот примитивный математический язык, который существовал в их время? Он был слишком маломощен для тех серьезных целей, которые ставили перед собой эти философы: они ведь стремились исследовать основные проблемы бытия и духа. И они нашли выход: в обычном человеческом мышлении и его выражении – естественном языке (в целом неподходящем для их серьезных задач) они отыскали такую часть, бесстрастную и однозначно действующую, которая нужна для их целей, логику. Эта часть мышления и языка, хотя она и не была формализован а, то есть представлена с помощью какой‑либо символики, тем не менее была достаточно надежна, поскольку состояла из правил – схем, форм рассуждений, фактически всегда присутствующих в мышлении и языке (отсюда прилагательное «формальная» в термине «формальная логика»). Учитывая это, можно сказать, что работы Платона (и других эллинских мыслителей того же ранга) удовлетворяют «критерию научности» Канта в том смысле, что проведены они с помощью схематизма (формализма) логики, употребляемого как инструмент научного исследования. Для строгого согласия с Кантом, правда, нужно признать этот формализм принадлежащим математике. Допущение, что в логических (то есть мыслительных, относящихся к рассуждениям) формах обычного языка с древнейших времен был заложен математический аппарат, ещё недавно показалось бы странным. Однако сейчас, в эпоху великого соединения математики и логики, это уже не удивляет. Здесь мы должны, наконец, сказать об Аристотеле. В чем состоял его вклад, если логические схемы – правила рассуждений (во многом, во всяком случае) – были выделены до него? Прежде всего в том, что он их систематически описал в серии трудов, составляющих знаменитый «Органон»[12]. В важнейшем из этих трудов – «Первой аналитике» – была изложена силлогистика (система силлогистических умозаключений, или силлогизмов) – главное достижение Аристотеля в логике, от которого идет теория логики, то есть логика как наука. — 14 —
|