88. Задачу можно решить простым методом подбора. Допустим, человек родился в 1980 году. Сумма цифр года его рождения – 18. Сколько лет ему будет в 1998 году? 1998–1980 = 18. Итак, в 1998 году возраст человека (18 лет) оказывается равным сумме цифр года его рождения (1980). Человеку 18 лет. 89. На первый взгляд может показаться, что Оля проходит 30 ступенек – в два раза меньше, чем Катя, так как она живет в два раза ниже ее. На самом деле это не так. Когда Катя поднимается на четвертый этаж, она преодолеет 3 лестничных пролета между этажами (между 1-ым и 2-ым, 2-ым и 3-им, 3-им и 4-ым). Значит между двумя этажами 20 ступенек: 60: 3 = 20. Оля поднимается с первого этажа на второй, следовательно, она преодолевает 20 ступенек. 90. Это число 9I, которое при переворачивании вверх ногами превращается в I6. При этом оно уменьшается на 75 (91–16 = 75). При решении этой задачи надо учитывать, что при переворачивании числа вверх ногами его цифры не только переворачиваются, но и меняются местами. 91. Возраст Саши примем за х. Тогда возраст одного его x брата – (х + 3), другого – (х – 3), третьего – , а отца – 3х. Поскольку всем вместе 95 лет, можно составить уравнение: Преобразуем: Итак, Саше 15 лет, одному его брату – 18, другому – 12, третьему – 5, а отцу – 45 лет. 92. На развернутом листе будет 128 дырок. Надо принять во внимание, что при каждом складывании листа количество дырок удваивается. 93. Надо зажечь спичку, и очень быстро, пока она разгорается, опустить ее в бутылку с дымом, который при этом сразу же будет вытеснен. 94. Можно предположить, что фрукты весят 10 кг, а корзинка 1 кг. Но тогда фрукты тяжелее корзинки на 9 кг, а по условию они тяжелее ее на 10 кг. Значит фрукты весят 10,5 кг, а корзинка 0,5 кг. (См. также задачу 87). 95. Как видим, эта задача представляет собой геометрическое толкование того, что 4 ? 9 = 6 ? 6. 96. Три человека: дед, отец и сын – это два отца и два сына – поймали трех зайцев, каждый по одному. 97. У Насти дома живет один попугай, один котенок и один кролик. 98. Эффект этой задачи-фокуса заключается в том, что увеличение любого трехзначного числа до шестизначного путем его дублирования равносильно умножению этого трехзначного числа на 1001. Кроме того, произведение чисел 13, 11 и 7 также равно 1001. Следовательно, если получившееся шестизначное число разделить в любой последовательности на эти три числа (13, 11, 7), то получится исходное трехзначное число. (См. также задачу 183). — 33 —
|