К этим примерам можно добавить еще один, и этого, пожалуй, будет достаточно для иллюстрации роли поризма в развитии научных идей. Это история создания И. Ньютоном дифференциального исчисления. Метод дифференциального исчисления (метод «исчисления флюксий») И. Ньютон, как известно, изобрел в 1665 г., когда ему было всего 22 года, но долго его не публиковал, пользуясь им лишь для решения конкурсных математических задач. Лишь много позже, после выхода соответствующих статей Г. Лейбница, он вступил с ним в жаркую полемику, отстаивая свой приоритет. Не ясно, осознавал ли И. Ньютон с самого начала общее значение этого метода или рассматривал его лишь как ординарный, хотя и новый математический прием. Можно с уверенностью утверждать, что случаев, подобных описанным выше (хотя, возможно, и не такого масштаба), в истории науки достаточно много, и аналогичные примеры можно привести из разных областей знания. Но вот что замечательно: ситуаций, подобных принципу поризма в развитии идей, много и в живой природе, хотя до сих пор, кажется, на это не обращалось должного внимания. Примеры из области биологии Как уже упоминалось, в биологии поризмами можно называть такие изменения организации живых организмов, которые, решая задачи «сегодняшнего дня», в то же время открывают новые возможности для их дальнейшего развития. К сожалению, точно реконструировать каждый такой случай весьма затруднительно (о поризмах, произошедших давно, мы можем судить лишь по их результатам, а поризмы, которые произошли недавно, еще не успели себя выявить). Поэтому здесь нам придется пользоваться в значительной мере лишь правдоподобными догадками. К явным поризмам, пожалуй, можно отнести случаи повышения надежности геномов при переходах от низших кариотаксонов к высшим [2]. Действительно, частота возникновения губительных изменений генетической информации (т.е. летальных мутаций) в общем случае должна быть пропорциональной отношению М·К-1, где М - информационная емкость или число оснований в нуклеиновой кислоте, а К – надежность генетического аппарата. Таким образом, при постоянстве К частота летальных мутаций будет возрастать прямо пропорционально М –информационной емкости генетического аппарата. При достижении М некоторого критического значения, угрожающего жизнеспособности популяции, выход из этой ситуации становится жизненно важным для данных обитателей данной среды. Решения этой задачи могут быть самыми разными, в том числе уменьшение размеров генетических структур, развитие систем, предотвращающих губительное действие помех, а также увеличение К – надежности организации генетического аппарата. Последнее решение – повышение К – не только удовлетворяет требованиям «злобы дня», но и открывает возможности для дальнейшего увеличения информационной емкости генетических структур, т.е. для увеличения числа оснований в нуклеиновых кислотах, по крайней мере, до тех пор, пока мутационное давление опять не возрастет до критического значения. На основании результатов радиобиологических экспериментов [3] можно думать, что в ходе эволюции повышение К происходило не менее трех раз, причем каждый раз это осуществлялось путем усложнения структурной организации генома, что переводило живые организмы из 1-го кариотаксона (К = 1·102эВ) во 2-й (К = 1,1·10s. эВ), из 2-го – в 3-й (К = 4,6·103 эВ), а из 3-го – в 4-й (К=6,1·106эВ). Это сопровождалось увеличением информационной емкости генетического аппарата клеток, от первичных вирусоподобных организмов (1-й кариотаксон) до высших эукариот (4-й кариотаксон) примерно в 105–106 раз – от 105— 107 до 1011–1012 оснований. Такое возрастание информационной емкости генома, в свою очередь, служило основой для прогрессивной эволюции живых организмов, так как позволяло не только накапливаться в избытке генетической информации, но и периодически уменьшать мутационное давление путем «сброса» более или менее значительных фрагментов генетического аппарата в ходе приспособления к различным экологическим нишам [4]. Здесь, следовательно, увеличение надежности генома, решая задачу выхода биологических объектов из-под мутационного пресса, в то же время открывало новые пути для дальнейшего развития живых организмов в направлении все большего повышения их организации. Это, конечно, яркий пример поризма в биологии. — 95 —
|