[441] Salomon, D.S. and others, 1999. Cripto: a novel epidermal growth factor (EGF)-related peptide in mammary gland development and neoplasia. Bioessays , 21 (1), 61–70; Chou, Y.C. and others, 1999. Induction of mammary carcinomas by N-methyl-N-nitrosurea in ovariectomized rats treated with epidermal growth factor. Carcinogenesis , 20 (4), 677–684; Kurtz, A. and others, 1998. Local control of mammary gland differentiation: mammary-derived growth inhibitor and pleiotrophin. Biochemical Society Symposium , 63, 51–69; Taylor, M.R. and others, 1997. Lactadherin (formerly BA46); a membrane-associated gycoprotein expressed in human milk and breast carcinomas, promotes Arg-Gly-Asp (RGD)-dependent cell adhesion. DNA and Cell Biology , 16 (7), 861–869. [442] Zhau, H.J. and others, 1996. Androgen-depressed phenotype in human prostate cancer. Proc. Natl. Acad. Sci. U.S.A ., 93 (26), 15 152-15 157. [443] Thornburg, W. and others, 1984. Gastrointestinal absorption of epidermal growth factor in suckling rats. American Journal of Physiology , 246, G80-G85. [444] www.prostatepointers.org/cmyers/pf0696.html [445] Gaull, G.E. and others, 1985. Significance of growth modulators in human milk. Pediatrics , 75 (2), 142–145. [446] Delgrange, E. and others, 1997. Sex related differences in the growth of prolacrinomas: a clinical and proliferation marker study. Journal of Clinical Endocrinology and Metabolism . 82 (7), 2102–2107. [447] Vonderhaar, B.K., 1998, Prolactin: The forgotten hormone of human breast cancer. Pharmacology and Therapeutics , 79 (2), 169–178; Das, R. and others; 1996. Involvement of SHC, GRB2, SOS and RAS in prolactin signal transduction in mammary epithelial cells. Oncogene , 13 (6), 1139–1145; Mershon, J, and others, 1995. Prolactin is a local growth factor in rat mammary tumors. Endocrinology , 136 (8), 3619–3623; Ginsberg, E. and others, 1995. Prolactin secretion by human breast cancer cells. Cancer Res , 55 (12), 2591–2595; Fuh, G. and others, 1995. Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J. Biol Chem , 270 (22), 13 133-13 137. [448] Leav, I. and others, 1999. Prolactin receptor expression in the developing human prostate and in hyperplastic, dysplastic, and neoplastic lesions. American Journal of Pathology , 154 (3), 863–870; Horti, J. and others, 1998. A phase 2 study of bromocriptine in patients with androgen-independent prostate cancer. Oncology Reports , 5 (4), 893–896; Franklin, R.B. and others, 1997. Prolactin regulation of mitochondrial aspartate aminotransferase and proteinkinase C Molecular and Cellular Endocrinology , 127 (1), 19–25; Janssen, T. and others, 1996. In vitro characterization of prolactin-induced effects on proliferation in the neoplastic LNCaP, DU145, and PC3 models of the human prostate. Cancer , 77 (1), 144–149; Janssen, T. and others, 1995. Organ culture of human tissue as study model of hormonal and pharmacological regulation of benign prostatic hyperplasia and of prostatic cancer, (frans) Acta Urol Belg , 63 (1), 7-14; Oliver, R.T. and others, 1995. New directions with hormone therapy in prostate cancer: possible benefit from blocking prolactin and use of hormone treatment intermittently in combination with immunotherapy. Eur. J. Cancer , 31A (6), 859–860; Rana, A. and others, 1995. A case for synchronous reduction of testicular androgen, adrenal androgen and prolactin for the treatment of advanced carcinoma of the prostate. Eur. J. Cancer , 31A (6), 871–875. — 365 —
|