3. Элементом каждой такой системы нужно считать тоже сложные системы, способные к самостоятельности. Они ее частично утрачивают, объединяясь в систему высшего уровня. Так появились основные типы живых систем: клетки из макромолекул, организмы из клеток, сообщества из индивидов. Структурные единицы низшего порядка (атомы) нельзя признать элементами сложной (живой!) системы. 4. Границей живых систем является проявление вторичных «управляющих» подсистем, содержащих модели. Если в первых «рабочих» подсистемах циркулируют частицы и энергия, то во вторых, кроме того, — сигналы, призванные передавать информацию, то есть управлять материальными процессами с ничтожными затратами энергии и вещества. Сигналы можно представить как комплексы из частиц низшего порядка (электроны, атомы, молекулы), несущие кванты энергии, организованные во времени в структуры из колебаний (звук, свет). 5. Все структуры и функции построены по иерархическому принципу: каждый высший этаж управляет низшими. В процессе эволюции (самоорганизации) происходит наращивание этажей (уровней) сложности. Одновременно формируются обратные связи, обеспечивающие интеграцию системы в единое целое. 6. Внешние и внутренние функции регулируются сочетанием прямых и обратных связей, положительных и отрицательных. Так обеспечивается как поддержание постоянства внутренних параметров, так и «порционность» внешних функций, выражающаяся в «циклах». 7. Зависимости между этажами регуляторов и рабочих подсистем в количественном выражении очень различны — от жесткого соподчинения до значительной автономности. Соответственно различно участие этажей в выполнении программ и реализации Целевых Функций, от универсального обмена веществ до актов сложного поведения. 8. На каждом структурном этаже имеют место свои процессы самоорганизации, в разной степени влияющие на изменения целой системы. В них также можно выделить ведущие и подчиненные звенья. 9. «Степень сложности» живой системы определяется числом элементов, количеством основных структурных этажей и дополнительных уровней управления, диапазоном приспособления к внешним условиям, способностью к изменению программ управления внешней средой (творчеством?), способностью создавать системы более высокого уровня сложности. Функции клетки, организма, сообщества, в самом общем виде, можно выразить через обмен комплексами и частицами более низкого порядка, с включением «порций» энергии, как между частями системы, так и с окружающим миром. В клетках это атомы и молекулы, в организме — это еще и сигналы, в сообществе — сигналы, силы и предметы. При этом имеют место два вида изменений в самой системе. Первые — циклические, с возвращением к (приблизительно) исходному состоянию в конце цикла. Вторые — нециклические, полностью или частично необратимые. Эти последние протекают по принципам самоорганизации с направленностью на усложнение или на деградацию первоначальной структуры. Оба типа процессов идут в разных масштабах времени, хотя и одновременно. Оба они оказывают влияние друг на друга: медленная деградация уменьшает периодические функции и, наоборот, сами эти функции могут служить усложнением самосборке некоторых субструктур, совершенствующих всю систему. Примером первых может служить любая патология, ухудшающая физиологические функции, например, ритмические сокращения сердца. Иллюстрацией вторых являются процессы тренировки: мышечные упражнения ускоряют синтез белков и повышают дееспособность организма. По такому же типу взаимодействуют быстрые мыслительные процессы (см. ниже) и медленные изменения психики. — 353 —
|