Способ оказался очень эффективным. Примерно у 85 процентов больных восстанавливается симметричное положение глаз, а у 60 процентов – истинно бинокулярное восприятие. Создавая свою методику лечения косоглазия, Аветисов и Кащенко придумали несколько новых контрольно-исследовательских приборов и среди них такой, который может незаметно для испытуемого увеличивать или уменьшать одну из картинок в стереоскопе. С его помощью было сделано открытие: мозг умеет сливать в нераздваивающийся образ приходящие от глаз изображения, даже если одно отличается от другого по размеру на 65 процентов. А ведь раньше считали, что 5 процентов – уже предел... Мало того, сцепленность образов, фузия, сохраняется, даже когда экспериментатор вводит в поле зрения особые призмы, как бы растаскивающие изображения на обеих сетчатках в разные стороны. У больных, конечно, показатели устойчивости хуже. Но прибор и создан для того, чтобы объективно выявлять людей со склонностью к косоглазию, с едва начавшейся болезнью. Как можно объяснить новооткрытый феномен? Если придерживаться классических представлений о передаче картинки из сетчатки в затылочную кору методом «точка в точку», столь огромное различие в размере таинственно. Оно просто невозможно без развала бинокулярного восприятия. Современная же нейрофизиология, оперирующая понятиями рецептивных полей, может высказать некоторые соображения на этот счет (правда, опытами они еще не подтверждены). Во-первых, сигнал от каждого фоторецептора приходит, как известно, на множество модулей зрительной коры. Во-вторых, относящиеся к одному глазу модули – глазодоминантные – расположены вовсе не как солдаты в парадной шеренге: никаких стройных рядов, лабиринт – вот слово, какое только и может охарактеризовать топографию модулей глазодоминантности. И наконец, не следует забывать, что в зрительном тракте образ передается системой параллельно действующих каналов, так что форма и размер отражаются разными нейронными структурами. Поэтому до определенного момента изображения, пришедшие от каждого глаза, будут отмечаться в коре как одинаковые, несмотря на различия в размерах. И только потом, когда сигнал от канала размера превысит некий порог, изображения разъединяются – возникает диплопия. Пространственно-частотный подход к определению характеристик зрительного аппарата оказался очень продуктивен в таком важном деле, как массовое обследование людей, чтобы выявить малозаметные, но опасные признаки начавшегося заболевания. Ведь здесь важно иметь надежный, не требующий дорогой аппаратуры, а главное, быстрый метод. Его и разработали ленинградские ученые: профессор Вениамин Васильевич Волков, начальник кафедры офтальмологии Военно-медицинской академии, сотрудница той же кафедры Людмила Николаевна Колесникова и старший научны» сотрудник лаборатории физиологии зрения Института физиологии им. И.П. Павлова АН СССР Юрий Евгеньевич Шелепин. Суть метода очень проста. Вы усаживаетесь перед прибором, а на его экране движется неширокая щель, в которой видна решетка какой-либо пространственной частоты. Таких решеток восемь, каждая нарисована так, что ее контрастность плавно изменяется. Поэтому видится решетка во время прохождения щели сначала расплывчато, потом четко. Начинают пускать щель с самого малого контраста и самой низкой пространственной частоты, а от человека только и требуется, что сказать «Вижу!» в тот момент, когда он заметил прутья решетки. Можно проверять оба глаза сразу, можно каждый в отдельности, то и другое очень важно для диагностики. — 123 —
|