Современная научная картина мира

Страница: 1 ... 3435363738394041424344 ... 219

Когда оледенение возвращается вновь, картина воспроизводится с противоположным знаком. Пища вновь скудна и редка. Ее недостает малоподвижным господам межледниковья, а осваивать большие пространства они не в силах. Уцелевшие остатки высокоподвижной фауны, коротающие теплые времена на задворках экосреды (как млекопитающие мезозоя; см. разд. 2.3), поднимают голову, обнаруживают, что снова стали актуальны, и приступают к подвижному патрулированию биоты. Недавние малоподвижные господа теплолюбивой жизни частью не выдерживают нового направления конкуренции и вымирают, а частью уходят в тень – до будущих теплых времен. Многочисленные палеонтологические примеры сказанному мы приводим ниже (см. разд. 2.3).

Таким образом, можно увидеть определенную тенденцию земной эволюции, которая направляется экологией, та, в свою очередь, климатом, а он – дрейфом материков, т. е. циклическим геологическим фактором. Продемонстрируем на фактах, что подобная эволюционная тенденция действительно реализовалась в истории земной жизни.

2.3. Эволюция

Археозой (4,55-2,5 млрд лет назад)

Согласно концепции абиогенеза (о химической эволюции жизни из неорганического материала), процесс начался в глубоководных гипертермальных источниках 4,2–4,0 млрд лет назад, а 4,0–3,7 млрд лет назад достиг поверхностных вод [525]. Жидкая вода возникла на Земле 4,3 млрд лет назад [575]. Следы ископаемых организмов появляются в палеонтологической летописи в позднем гадее св. 3,85 млрд лет назад [422], а также [156; 225; 282; 465; 574; 580; 600; 677; 678; 788]. Отметим, что по молекулярно-генетическим данным возраст первых организмов оценивается приблизительно в 1,8 млрд лет [578], что вдвое уступает палеонтологическому возрасту; по-видимому, 1,8 млрд лет назад – это возраст эволюционного расхождения тех организмов, чьи прямые потомки дожили до наших дней, поскольку молекулярно-генетический возраст, например, нескольких родственных видов живых существ определяется до момента разветвления эволюционных путей их предков.

Под влиянием мобилизующих колебаний продуктивности среды древние микроорганизмы развили пищевую автономность (автотрофность), чтобы не зависеть от внешних ресурсов в неурожайные (ледниковые) периоды. Около 3,8–3,5 (или 3,5; 3,465; 3,416) млрд лет назад цианобактерии освоили фотосинтез, т. е. способность синтезировать углеводы, аминокислоты, белки, пигменты и другие соединения под действием солнечного света [232; 788; 677; 678; 753]; а также [399; 465; 600]. Побочным продуктом фотосинтеза является свободный кислород. Однако поначалу он практически весь уходил на окисление железа, так что 2,8 млрд лет назад свободного кислорода в атмосфере почти не было [465, с. 2112]. Лишь 2,32 млрд лет назад наметился его атмосферный рост [181].

— 39 —
Страница: 1 ... 3435363738394041424344 ... 219