Первую успешную попытку смоделировать на цифровой вычислительной машине (ЦВМ) интеллектуальный процесс совершили в 1950-х годах американские ученые А. Ньюэлл, Г. Саймон и Дж. Шоу [463,464,465]. Они писали, что хотели понять, как математик приходит к доказательству теоремы, даже если он вначале не знает, как ему это сделать и сможет ли вообще ее доказать. Их программа «Логик-теоретик» состоит в последовательном переходе от одного этапа к другому при непрерывном изменении состава проблем. Ведущую роль в программе играют алгоритмы сравнения и подобия. Процесс продолжается до тех пор, пока в результате решения подпроблем не будет решена основная проблема или пока не будет нарушено одно из ограничений программы. Позже этими же исследователями была разработана программа «Общий решатель задач» (ОРЗ). От предыдущей модели эта программа отличалась тем, что пересмотр всех подпроблем осуществлялся не последовательно от одной к другой, а по оптимальному пути. Направление пересмотра подпроблем может меняться в зависимости от успешности или безуспешности решения текущей подпроблемы. Иначе говоря, в программе объединены две логические системы: поиск решения задачи и анализ средств достижения цели. Для этого используется абстрагирование от конкретных деталей первоначально заданных объектов и условий. После этих первых успехов работы по моделированию решения задач пошли потоком. Появляются программы эвристического характера. Они «характеризуются способностью решать задачи индуктивным путем при недостаточной дедуктивной информации» [46, с. 70]. У. Рейтман предлагает программу «Аргус», а вместе с М. Санчесом он изобретает программу «Композитор» [322]. Г. Гелентор составляет программу решения геометрических задач с элементами самообучения. Примечательна программа ученика Ньюэлла и Саймона Дж. Кларксона, моделирующая работу банковского консультанта по покупке акций. Эта программа сугубо практической направленности выдавала клиентам советы, почти совпадающие с советами настоящих консультантов. Интересен метод поиска закономерностей по множествам положительных и отрицательных примеров, предложенный Д. С. Миллером и названный инициалами автора «ДСМ-метод» [292]. Все эти (как и многие другие) программыде-монстрируют совмещение моделирования физиологических и психологических механизмов. В них нет прямой апелляции к нервному субстрату, но в целом подход реализует идею моделирования той субстанции (причины), от деятельности которой зависит решение задачи (результат – следствие). Совершенно оригинальное но в принципе характерное для этого подхода решение предложил Н. И. Кобозев [157]. Он обращается не просто к нервному субстрату психики, а к атомно-мо-лекулярному уровню организации нервной системы и организма в целом. Раз организм человека состоит из атомов и молекул, а психическая деятельность предопределена работой организма, то и механизмы психической деятельности должны быть сложены из атомов и молекул. Этот посыл позволяет анализировать процесс мышления с позиций термодинамики. Одной из характеристик любой молекулярно-кинетической системы является наличие в ней самопроизвольных процессов, переводящих систему во все более устойчивое состояние. Мерой этих переходов из состояния в состояние выступает энтропия. Далее Н. И. Кобозев доказывает, что логическое мышление является именно таким самопроизвольным процессом, но в котором отсутствует неупорядоченность, т. е. энтропия равна нулю. Но это противоречит законам термодинамики, поскольку при этом температура тела мыслящего человека должна была бы равняться абсолютному нулю. Таким образом, считает Н. И. Кобозев, мышление как однозначное логическое суждение – единственное естественное явление, приводящее к конечному идеальному результату – безэнтропийному состоянию. Отсюда делается вывод, что мышление осуществляется при помощи не обычных молекулярных механизмов, а при помощи либо специальных субатомных механизмов (и надо найти соответствующие нейтральные частицы), либо сверхмолекулярных механизмов, присущих неизвестным пока свойствам биологических форм движения материи. Версия Н. И. Кобозева – хороший пример того, как процесс моделирования может изменять наши представления об объекте-прототипе. — 256 —
|