Психология труда

Страница: 1 ... 221222223224225226227228229230231 ... 247

Найденное показание оператор должен разделить на два, Количество информации, используемой при вычислении, находится по формуле

(2.6)

где Ni - максимально возможные значения используемых при вычислении чисел; m - количество чисел, используемых при вычислении; R - максимально возможное значение результата вычисления.
Нетрудно заметить, что формула (2.6) получена на основании приведенных выше правил. Ее применение основано на том, что при производстве вычислений человек т раз производит выбор нужного числа из М возможных, а при получении результата - выбор одного числа из Ni возможных. Подставляя исходные данные в формулу (2.6), получим: Нвыч = lg2100 + lg22 + lg250 = 13,28 дв.ед.
Общее количество перерабатываемой информации равно Н1 = Нпр + Нвыч = 5,64 + 13,28 = 18,92 дв.ед.
Рассмотренная стратегия поведения характерна для оператора малообученного или оператора, который сравнительно редко производит измерения на данном диапазоне. Если же оператор часто работает с прибором, то у него могут быть сформированы и храниться в памяти эталоны истинных значений для каждого значения шкалы прибора. Тогда действие по переводу отсчета со шкалы в истинное значение практически будет отсутствовать, выполняться автоматически на уровне навыка, внимание оператора на его выполнение специально не будет направлено. При каждом отсчете оператор будет извлекать из памяти хранящиеся там эталоны истинных значений измеряемого показателя и использовать их для получения конечного результата без производства специальных вычислений. Очевидно, количество перерабатываемой человеком информации будет определяться только той величиной, которую оператор получает производя отсчет по шкале прибора, т.е. в этом случае Н1 = 5,64 дв.ед.
Как видим, информационные методы не всегда дают однозначный ответ о результатах деятельности оператора. Даже решая одну и ту же задачу, человек может применять различные стратегии поведения. Это существенно влияет на количество информации, перерабатываемой при решении задачи.
При работе на втором диапазоне оператор сразу получает истинное значение измеряемого показателя, т.е. Н2=5,64 дв.ед. При работе на третьем диапазоне оператор помимо снятия отсчета должен умножить полученное значение на пять. Расчет количества информации производится аналогично тому, как это делалось для первого диапазона.
Методы теории информации применяются в инженерной психологии при решении ряда задач. Во-первых, количество перерабатываемой информации может использоваться как мера сложности работы оператора, следовательно, такой способ позволяет сравнивать между собой различные виды операторской деятельности. Во-вторых, зная количество информации, можно оценить время, которое затрачивает оператор на переработку этой информации, поскольку между ними, как правило, существует линейная зависимость. В-третьих, знание количества информации позволяет согласовать скорость ее выдачи (производительность источника информации) с психофизиологическими возможностями человека по ее приему и обработке. Условием неискаженной передачи информации является: Vпос < Vоп, где Vпос - скорость поступления информации к оператору; Vоп - пропускная способность оператора.
Величина Voп зависит от характера деятельности оператора. Если он может быть представлен как канал без памяти, то величина пропускной способности лежит в пределах 10-70 дв. ед/с. В этом случае человек работает как простой канал передачи информации, последовательные сигналы независимы друг от друга, предыдущий сигнал не влияет на прием следующего (печатание на машинке, корректорская работа, выполнение арифметических операций и т. п.).
Если в процессе деятельности оператору необходимо запомнить отрезок входной последовательности сигналов, не превышающий объем кратковременной памяти (подробнее см. гл. 5), то в этом случае человека можно рассматривать как канал переработки информации с кратковременной памятью. Пропускная способность имеет в этом случае порядок нескольких дв.ед. в секунду (примерно 2-4 дв. ед/с). Такой режим является наиболее характерным для деятельности оператора.
Если же отрезок входной информации превышает объем кратковременной памяти, то для его запоминания необходимо многократное повторение. Пропускная способность вследствие этого падает до десятых долей дв.ед. в секунду и ниже.
Применение теории информации для анализа деятельности оператора связано с целым рядом трудностей. Это обусловлено тем, что теория информации была создана для решения ряда задач в технике связи. Поэтому простой перенос ее методов в другую область - исследование человеческой деятельности - не всегда дает желаемые результаты.
Основные причины трудностей применения теории информации для изучения деятельности оператора заключаются в следующем:
1. В основе расчета количества информации по формулам (2.3) и (2.4) лежит длина физического алфавита сигналов и вероятностей их появления. Человек же зачастую пользуется собственным (внутренним) алфавитом сигналов, отличным от физического, а субъективные вероятности сигналов для человека не всегда совпадают с объективными. Однако принципы формирования субъективного алфавита еще до конца не раскрыты. Поэтому приходится пользоваться некоторой идеализированной моделью деятельности человека, в основу которой положены характеристики входных, а не "внутренних сигналов" человека.
2. Теория информации занимается лишь стационарными процессами, статистические характеристики которых с течением времени не меняются. Характеристики же человека ввиду его обучаемости, утомляемости, действия различных факторов беспрерывно меняются во времени.
3. Теория информации не учитывает смысловую сторону информации, ее ценность и значимость. На деятельность же оператора оказывают влияние не только статистические характеристики сигналов, но и их смысл и значение для оператора.
4. Теория информации не учитывает временную неопределенность сигналов. Для человека же имеет большое значение не только то, какие сигналы и с какой вероятностью к нему поступают, но и время их поступления. Это является источником дополнительной неопределенности, которая при анализе деятельности, как правило, не учитывается.
Наличие этих трудностей накладывает существенные ограничения на применение теории информации в инженерной психологии. Игнорирование их приводит к значительному разбросу экспериментальных данных и затрудняет сопоставление результатов, полученных в разных исследованиях. Однако это не должно являться причиной отказа вообще от применения информационных методов в инженерной психологии. Как и любой другой, информационный метод справедлив лишь при определенных условиях и для решения определенных задач. Эти условия в общем виде сводятся к следующему:
четко определен алфавит используемых человеком сигналов и вероятности их появления;
сигналы по своему смысловому значению примерно равноценны для оператора;
характеристики работоспособности оператора в пределах изучаемого отрезка времени не претерпевают существенных изменений;
стратегия поведения оператора известна и не меняется в процессе решения однотипных задач;
число поступающих к оператору различных сигналов невелико, сами сигналы слабо зависят друг от друга;
временная неопределенность сигналов существенно меньше смысловой неопределенности или же она может быть учтена при расчетах количества информации.
В тех случаях, когда эти условия соблюдены, применение теории информации для изучения и описания деятельности оператора дает весьма полезные результаты.
Для построения моделей деятельности оператора может использоваться также математический аппарат теории массового обслуживания. Структурная схема системы массового обслуживания (СМО) с человеком-оператором показана на рис. 2.8. Информация со средств отображения и от взаимодействующих операторов, а также сигналы внешней среды образуют входящий поток заявок (требований на обслуживание). Обычно предполагается, что входящий поток подчинен закону Пуассона. Такой поток иначе называется простейшим. Для его описания требуется знать величину Я - плотность входящего потока, которая равняется числу заявок, поступивших в единицу времени. Заявки поступают или прямо к оператору, или становятся в очередь на обслуживание (если оператор занят обслуживанием предыдущей заявки). Устройством для хранения очереди могут быть средства отображения информации или память оператора. В зависимости от организации очереди могут быть различные типы СМО: с ожиданием, или без потерь (любая заявка хранится до тех пор, пока не будет обслужена оператором); с ограниченным ожиданием (заявка, хранится в очереди ограниченное время); с ограниченной длиной очереди (в очередь может становиться лишь ограниченное число заявок); с потерями (заявки, поступившие в момент занятости оператора, в очередь не становятся и к обслуживанию не принимаются).

— 226 —
Страница: 1 ... 221222223224225226227228229230231 ... 247