В машинописи, — например, рекорд, установленный еще в 20-х годах этого столетия англичанкой Митчелл и равный 902 ударам в минуту, так до сих пор и не побит никем. Достижение победительницы 1966 года — одной чешской машинистки — равно всего 650 ударам в минуту. Интересно, что рассеивание в продуктивности работы людей незначительно, и среднеквадратичное отклонение (сигма) составляет всего несколько процентов от рекорда и редко превышает 5-10% его. На этой "одинаковости" людей, то есть близости их возможностей, держится все громадное здание "норм выработки" на производстве. Нормы зависят от технической вооруженности процесса труда и технологии, но никак не приспосабливаются к разным способностям людей. Все должны выполнять норму. Но оказалось, что не все виды деятельности подчинены этой закономерности. Пытаясь вскрыть закономерности развития технических способностей, я составил семь технических заданий (для школьников), охватывающих разные стороны технической деятельности. Это были модели технических работ, доступные для выполнения их детьми разного возраста, начиная с 56 лет. Тут были работы по сборке механизма без инструкций, изготовление модели из проволоки по чертежу, конструированию и.т. п. Задания имели ступенчатый характер: сначала шли части более легкие для выполнения, а затем все большей и большей трудности, так что каждый мог в зависимости от своих возможностей забраться на одну "ступеньку", на две, три... и т. д., до десяти или даже семнадцати. С этими заданиями я прошел от первого до одиннадцатого класса, давая каждому ученику все семь заданий и записывая не только процент выполнения задания (высшую ступеньку, до которой ученик добрался), но и ВРЕМЯ, затраченное им на эту работу. Рекордсмену, то есть ученику, выполнившему задания на 100% и затратившему минимум времени, давалась высшая оценка — 100 баллов. Если кто-либо выполнял задание также полностью, но затрачивал вдвое больше времени — он получал только 50 баллов, если втрое — 33 и т. д. Выполнившим задание только частично, например на 50%, балл снижался еще вдвое. Таким образом, каждый из учеников сравнивался по продуктивности работы с самым лучшим — какую долю работы рекордсмена он мог выполнить за одинаковое время. За два учебных года (1961-1963) мне удалось в виде школьной технической олимпиады измерить продуктивность работы 620 школьников различных классов и построить кривые развития продуктивности работы по отдельным видам заданий и по среднему результату из семи. Ни одна кривая не была похожа на обычные кривые развития, на все то, что я получал прежде (см. рисунок). Крутизна их подъема (скорость развития) не падала, а в шести кривых из восьми ВОЗРАСТАЛА — вплоть до конца восьмого класса, и они явно не имели никакой асимптоты. Почему? И распределение около среднего значения было явно асимметричным. Смещение вверх ничем и никак не ограничивалось, а явно предполагалось характером самих кривых. — 212 —
|