Овладев этим упражнением, дети самостоятельно продолжают его. Можно ли получить три двумя способами? Мы кладем один после двух и затем, чтобы запомнить сделанное, пишем: 2+1=3. Можно ли сделать, чтобы две палочки равнялись четырем? 3 + 1=4, а 4 – 3=1. 4 – 1=3. Палочка "два" в отношении к палочке "четыре" тоже находится в таком же отношении к палочке “четыре”, как пять к десяти; 4 : 2=2; 2 х 2 =4. Задача: узнаем, с каким числом палочек можно играть в эту игру? Можно взять 3 и 6; или 4 и 8;например: В этом пункте нам приходят на помощь кубики из игры на запоминание чисел Из этой схемы сразу видно, какие числа делятся на два, — все те, у которых внизу не имеется одинокого кубика. Все эти четные или парные числа, ибо их можно разложить парами по два; делить их на два легко: необходимо только отделить два ряда кубиков, стоящих один под другим. Сосчитав кубики каждого ряда, мы получим частное, а чтобы вновь составить первоначальное число, надо только снова собрать два ряда: 2 х 3=6. Для детей пяти лет все это не представляет затруднений. Повторения вскоре надоедают; но упражнение можно видоизменить, взяв опять серию длинных палочек, и вместо того, чтобы прикладывать палочку к девяти, приложить ее к десяти. Равным образом мы можем приложить два к девяти, а три к восьми; мы получим палочки длиннее десяти; получим длины в одиннадцать, двенадцать, тринадцать и т.д. до двадцати. Для заучивания этих более высоких чисел можно пользоваться и кубиками. Проделав действия с десятком, мы без труда переходим к двадцати. Единственное затруднение — десятичные числа, знакомство с которыми требует особых уроков. Уроки на десятичные числа. Арифметические действия с числами свыше десяти. Необходимый для этого дидактический материал состоит из картонных квадратов, на которых число 10 изображено крупными цифрами, и из картонных прямоугольников, размерами в половину квадрата, на которых отпечатаны цифры от 1 до 9. Цифры мы располагаем в ряд: 1, 2, 3, 4, 5, 6, 7, 8, 9. Не имея больше цифр, мы должны начать сначала и берем цифру 1. Эта 1 подобна отрезку палочки 10, выдавшемуся за палочку 9. Просчитав по длине лестницы до девяти, мы видим, что осталась длина, которую, за неимением других цифр, мы опять обозначим цифрой 1. Но эта более высокая 1; и для отличия первой 1 мы ставим рядом нуль, — знак, означающий "ничего". Вот и 10. Прикрывая нуль прямоугольными карточками с цифрами в порядке из последовательности, мы получаем 5 11, 12, 13, 14, 15, 16, 17, 18, 19. Эти цифры составляются путем прибавления к палочке 10 сперва палочки 1, потом 2, затем 3, пока, наконец, мы не прибавим палочки 9 к палочке 10, получив очень длинную палочку, которая после того, как мы сосчитаем красные и синие деления, даст нам девятнадцать. — 103 —
|